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Abstract
In this paper, we describe a new approach for building a three-dimensional model from
a set of range images. The approach is able to build models of free-form surfaces
obtained from arbitrary viewing directions, with no initial estimate of the relative
viewing directions. The approach is based on building discrete meshes representing
the surfaces observed in each of the range images, to map each of the meshes to a
spherical image, and to compute the transformations between the views by matching
the spherical images. The meshes are built using an iterative fitting algorithm previ-
ously developed; the spherical images are built by mapping the nodes of the surface
meshes to the nodes of a reference mesh on the unit sphere and by storing a measure of
curvature at every node. We describe the algorithms used tor building such models
from range images and for matching them. We show results obtained using range
images of complex objects.
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1. Introduction

Most computer vision systems require accurate three-dimensional models. The problem of
building such models from observations consists in taking multiple range image of the
object from different viewing positions and orientations, referred to as "viewing poses", to
match the data in the different images in order to recover the relative poses, and to merge the
data into a single model using the estimated poses. The approaches proposed so far suffer
from two major limitations. First, they require accurate knowledge of the relative viewing
poses. Second, they either require a complicated feature extraction algorithm to be applied
to the range image or they restrict the class of shapes that can be modelled. Our goal in this
paper is to eliminate these two restrictions in order to allow modelling of natural, free-form
objects from arbitrary unknown viewpoints.

Examples of feature-based model building include the work of Parvin and Medioni [8] in
which they segment range data into regions and represent one view as a graph of visible
regions. By matching two graphs from two arbitrary viewing directions, they determine the
transformation between the graphs. This method limits the class of shapes to which it can be
applied since it requires stable segmentation results. Other techniques, such as Kamgar-Par-
si's [6] avoid the need for real geometrical features by defining virtual features from, for
example, the iso-range contours of the object. Another example is Stein's approach (9] in
which the virtual features are groups of surface normals.

Other techniques eliminate feature matching by formulating the registration problem as a
non-linear minimization problem in which the objective function is the sum of the distances
between the data points in one view and the transformed data points from the other view.
For example, Champleboux [2] uses the Levenberg-Marquart algorithm to perform the min-
imization. This type of approach requires an initial estimate of the relative viewing poses.

Besl [1] proposed an algorithm for matching between free-form surfaces. The algorithm is
based on iterative projection of one surface on the other. A similar approach was suggested
by Chen and Medioni [3] and by Zhang [101. Besl's approach has the advantage that it does
not require extracting features or establishing correspondences between features. However,
because it is an iterative algorithm, it is very sensitive to the initial transformation.

In this paper, we propose a different approach to the model building problem. Our approach
is based on the representation of free-form surfaces developed in [4][5]. Figure 1 illustrates
our approach: A mesh of points is fit to an input set of data points from each view, a curva-
ture measure is computed at every node of the meshes and map to a spherical image, the
Spherical Attribute Image (SAI). The transformation between views is computed by com-
paring their SAIs. Finally, the data points from all the range images are merged into a single



set using the estimated poses and a complete surface model is computed.
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Figure 1: Surface matching using discrete meshes and spherical images.

We describe the algorithms used for SAIs from range images in Section 2.. We first describe
the concept of semi-regular meshes (Section 2.1.) and the measure curvature (Section 2.2.)
which are the basis for the surface representation. Then we introduce the mapping between
surface mesh and spherical mesh in Section 2.3. Finally we describe the algorithm used for
extracting representation from range data in Section 2.4.. This discussion will show that
there is no underlying assumption about the surface except that it is without topological
holes, thus supporting our claim that our approach is suitable for free-form surfaces. In Sec-
tion 3., we describe how two partial representations of the same object from two different
poses can be registered. We first show how to compute a rotation of the spherical image in
Sections 3.1. and 3.2.. We show in Section 3.2. that the search for the optimal rotation can be
made very efficient, provided that some tables are pre-computed. The algorithm of Section
3.2. will validate our claim that the matching algorithm requires no initial estimates of the
transformation and that it is guarantee to find the best transformation up to the resolution of
the mesh. We show how to convert this rotation into a full 3-D transformation between sur-
faces in Section 3.3.. Since no assumption is made on the transformation and since no prior
estimate is needed, we will show that the algorithm is able to match surfaces from arbitrary
poses. We discuss the issue of matching partial views in Section 3.4.. Finally, we show how
to build complete models in Section 4.

2



2. Spherical Attribute Images

In this section, we briefly introduce the concept of SAL. First, we explain how to tessellate
an arbitrary surface into a semi-regular mesh, and how to calculate the simplex angle, a vari-
ation of curvature, at the nodes of the mesh, and how to map the mesh to a spherical image.
Finally, we discuss how to handle partial views of 3-D objects.

2.1. Semi-Regular Tessellation

A natural discrete representw.*inn of a surface is a graph of points, or tessellation, such that
each node is connected to each of its closest neighbors by an arc of the graph. We use a type
of mesh such that each node has exactly three neighbors. Such a mesh can be constructed as
the dual of a triangulation of the surface. Let us first consider tessellations of the unit sphere.
We use a standard semi-regular triangulation of the unit sphere constructed by subdividing
each triangular face of a 20-face icosahedron into N2 smaller triangles. The final tessellation
is built by taking the dual of the 20 N2-face triangulation, yielding a tessellation with the
same number of nodes.

In order to obtain a mesh of an arbitrary surface, we deform a tessellated surface until it is-as
close as possible to the object surface (Section 2.4.). We need to add another constraint in
order to build meshes suitable for matching. In particular, we need to make sure that the dis-
tribution of mesh nodes on the surface is invariant by rotation, translation and scale. We
introduced in [5] the following regularity constraint: Let P be a node of the tessellation, P 1,
P2,/P 3 be its three neighbors, G be the centroid of the three points, and Q be the projection
of P on the plane defined by P1, P2, and P 3 (Figure 2). The local regularity condition simply
states that Q coincides with G. This local regularity constraint is the generalization to three
dimensions of the regularity condition on two dimensional discrete curves which simply
states that all segments are of equal lengths.

2.2. Discrete Curvature Measure

The next step in building a discrete surface representation is to define a measure of curvature
that can be computed from a tessellation. Instead of estimating surface curvature by locally
fitting a surface or by estimating first and second derivatives, we proposed in [5] a measure
of curvature computed at every node from the relative positions of its three neighbors. We
called this measure of curvature the simplex angle and we denote its value at node P by
g(P). Although g(P) is not the curvature at P, it behaves as a qualitative measure of curva-
ture which is sufficient for matching purposes. Figure 3 illustrates the behavior of g(P): The
simplex angle varies between -i and x. The absolute value of g(P) is large in absolute value
if P is far from the plane of its three neighbors and vanishes as P and its three neighbors are
in the same plane. Finally, g(P) is negative if the surface is locally concave, positive if it is
convex. g(P) is invariant by rotation, translation, and scaling .

I. Although the simplex angle is not formally the mean or Gaussian curvature of the surface, we frequently refer to it as the
"curvature" of the sudfe at a node of a discrete mesh.
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Figure 2: Local Regularity
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Figure 3: Definition of the Simplex Angle

2.3. Spherical Mapping

A regular mesh drawn on a closed surface can be mapped to a spherical mesh in a natural
way. For a given number of nodes K, we can associate to each node a unique index which
depends only on the topology of the mesh and which is independent of the shape of the
underlying surface. This numbering of the nodes defines a natural mapping h between any
mesh M and a reference mesh Son the unit sphere with the same number of nodes: h(P) is
the node of S with the same index as P.

Given h, we can store at each node P of S the simplex angle of the corresponding node on
the surface g(h(P)). The resulting structure is a spherical image, that is, a tessellation on the
unit sphere, each node being associated with the simplex angle of a point on the original sur-
face. We call this representation the Spherical Attribute Image (SAM). In the remainder of
the paper, we will denote by g(Q) instead of g(h'1 (Q)) the simplex angle associated with the
sphere node Q.

If the original mesh M satisfies the local regularity constraint, then the corresponding SAI
has several invariance properties. First, for a given number of nodes, the SAI is invariant by
translation and scaling of the original object. Second, the SAI represents an object unambig-
uously up to a rotation. More precisely, if Mand M' are two tessellations of the same object

I. In p•,viouw, imP 1 on fib subject, we unsd to z•fr to the SAl uthe Sinmlex Anogl InmW. Ile mew ,•m elects the fact
ibm thi •enseawiow may be used to store any anribue conmoped or menued m the ufu. no, jw doe sbmx ane.
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with the same number of nodes, then the corresponding SAIs S and S' are identical up to a
rotation of the unit sphere. One consequence of this property is that two SAIs represent the
same object if one is the rotated version of the other. It is this property which will allow us to
match surfaces that differ by arbitrary rigid transformations.

Another important consequence of the definition of h is that it preserves connectivity. More
precisely, a connected patch of the surface maps to a connected patch of the spherical image.
It is this property that allows us to work with non-convex objects and to manipulate models
of partial surface, neither of which are possible with conventional spherical representations.

In order to build complete models from partial views, we need to represent partial surface
models using the SAL. In practice, we always build a complete closed mesh even when only
a part of the surface is visible and we mark the nodes of the mesh that are in visible regions
of the range image. A node is marked as visible if its distance to the closest data point is
below a threshold.

2.4. Extracting the SAI from a Range Image

In the previous sections, we have described the basic approach to representing a mesh of
points as a spherical image. The remaining problem is to compute the 3-D mesh from a set
of 3-D points from a range image. We use directly the algorithm based on deformable sur-
faces introduced in [4].

The general approach is to first define an initial mesh near the object and to slowly deform it
by moving its nodes until the mesh satisfies two conditions: It must be close to the input
object and it must satisfy the local regularity condition. The first condition ensures that the
resulting mesh is a good approximation of the object, while the second condition ensures
that a valid SAI can be derived from the mesh. These two conditions can be expressed as a
set of forces acting between mesh nodes and data points and between the mesh nodes and
their neighbors. Once a locally regular mesh is created from the input data, a reference tes-
sellation with the same number of nodes is created on the unit sphere. We refer the reader to
[4] for the details of the algorithm.

Figure 4(a) and (b) show an intensity image and the corresponding set of points from the
range image. In this example, we use the dual of the 9th subdivision of a 20-face icosahe-
dron, (1620 faces) as shown in Figure 5(a). This initial mesh is deformed and reaches the
stable state shown in Figure 5(b). The corresponding SAI data is shown in Figure 5(c). In
the SAI display, the distance from each vertex to the origin is proportional to the simplex
angle.
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Figure 4: Input data; (a) Intensity image, (b) Range data.

Ilk

(a) (b))

Figure 5: (a) Initial mesh; (b) Deformed mesh; (c) SAl represented on the unit sphere.
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3. Registering Multiple Views

We now address the registration problem: Given two SAls, determine the rotation between
them, and then find the rigid transformation between the two original sets of points. The rep-
resentations of a single object with respect to two different viewing directions are related by
a rotation of the underlying sphere. Therefore, the most straightforward approach is to com-
pute a distance measure between two SAIs. Once the rotation yielding minimum distance
between spherical images is determined, the full 3-D transformation can be determined.

3.1. Finding the Best Rotation Between SAIs

In the following discussion, we will consider only the vertices of the SAIs that correspond to
visible parts of the surface. Let S and S' be the SAIs of two views. S and S' are representa-
tions of the same area of the object if there exists a rotation R such that g(P) = g (RP) for
every point P of S5 Since the SAI is discrete, g(RP) is not defined because in general RP
falls between nodes of S'. We define a discrete approximation of g(RP), G(RP), by interpo-
lating the values of g at the four nodes of S' nearest to RP, P, to P4. Formally, G(RP) is a
weighted sum of g(Pi). This interpolation is introduced only temporarily because we will
see in Section 3.2. that we only need to' test a small number of rotations for which the inter-
polation is not necessary.

The problem now is to find this rotation using the discrete representation of Sand ,5'. This is
done by defining a distance D(S, S" R) between SAIs as the sum of squared differences
between the simplex angles at the nodes of one of the sphere and at the nodes of the rotated
sphere. Formally, the distance is defined as:

D(S, S', R) = (g(P) -G(RP)) 2

The minimum of D corresponds to the best rotation that brings Sand S' in correspondence.

Figure 6 shows the result of matching two views of a head. Figure 6(a) shows the intensity
images of the two views of the object. Figure 6(b) shows the corresponding SAIs. Figure
6(c) shows the distribution of D as a function of two of the rotation angles, (p and 0. The
graph exhibits a sharp minimum corresponding to the best rotation between the two spheri-
cal maps.

The rotation of the SAIs is not the same as the rotation of the original objects; it is the rota-
tion of the spherical representations. An additional step is needed to compute the actual
transformation between objects as described in Section 3.3. below.

7
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Figure 6: Matching two SAIs

3.2. Efficient Matching

The graph of Figure 6 was obtained by sampling the space of all possible rotations, repre-
sented by three angles (0, (p, W), and by evaluating D for every sample value (0i, , WJi).
Although it is the approach that we used initially, it would be too expensive in practice to
compute the distance for all possible rotations.

We developed an efficient SAI matching algorithm based on the observation that the only
rotations for which D(S, S', R) should be evaluated are the ones that correspond to a valid list
of correspondences { (Pi, P'j) I between the noes Pi of Sand the nodes P'j of S'. Figure 7(a)
illustrates the idea of correspondences between nodes: Node P, of the first SAI is put in cor-
respondence with node P'i1 of ,5' and its two neighbors, P2 and P 3, are put in correspon-
dence with two neighbors of P'i1 , P'i 2 and P'i3, respectively. This set of three
correspondences defines a unique rotation of the spherical image. It also defines a unique
assignment for the other nodes, that is, there is a unique node P'ij corresponding to a node Pi
of 5, given the initial correspondences. Moreover, there is only a small number of such ini-
tial correspondences, or, equivalently, there is a small number of distinct valid rotations of
the unit sphere. In fact, the number of rotations is 3K if K is the number of nodes.
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Based on this observation, we developed an SAI matching algorithm decomposed into two
stages: a pre-processing phase and a run-time phase. During pre-processing, we generate the
data structure shown in Figure 7(b). The data structure is a two dimensional array in which
each row corresponds to a possible rotation of the SAI and in which columnj of row i is the
index of the node Pij corresponding to node Pj and correspondence number i. At run-time,
the distance is evaluated for each row of the array:

DO(S, S', R) = Y, (g(Pj) - g(Pi')) 2

The row that produces the minimum Di gives the best correspondence between nodes of the
mesh, ((Pj, P'ij)}, which is used for computing the full transformation between the object
meshes as described in the next section. It is important to note that this algorithm tries all
possible rotations of the SAIs up to the resolution of the mesh. Consequently, it is guaran-
teed to find the global optimum of D and it does not require an initial estimate of the trans-
formation. This validates our initial claims of global optimality and pose-independence of
the algorithm. This is an efficient algorithm because all that is required at run time is to look
up the correspondence table, to compute the sum of square differences of the corresponding
nodes and to add them up. In our current implementation, the computation time is 7 sec. for
K - 980.

P3  P,13  -,i

(a) P4
P,

P P, 4

P node number

J K

(b) P PPiK
S• ij

Figure 7: Efficient matching algorithm; (a) Valid correspondence between nodes; (b)
Table of correspondences

3.3. Computing the Full Transformation

The last step in matching objects is to derive the transformation between the actual objects,
given the rotation between their SAIs. The rotational part of the transformation is denoted
by Ro, the translational part by To. Given a SAI rotation R, we know the corresponding node
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P' of each node P of S. Let M, resp. M', be the point on the object corresponding to the node
P of S, resp. P'. A first estimate of the transformation is computed by minimizing the sum of
the distances between the points M of the first object and the corresponding points RoM'+To
of the second object. Formally, the expression to minimize is:

E(R,,, T,,) = Ml - (R.M' + T,,) 112

The sum in this expression is taken over the set of all the nodes of the mesh. The optimum
transformation for E can be computed in a non-iterative manner by using the standard
quaternion-based techniques. The resulting transformation is only an approximation because
it assumes that the nodes from the two meshes correspond exactly. We use an additional step
to refine the transformation by looking for the node M closest to M' for every node of the
mesh and by computing again the minimum of E(R,T) [5].

Figure 8 shows the final result of computing the transformation between the two views of
Figure 6. Figure 8(a) shows the superimposition of the data points from the two range
images before computing the transformation. Figure 8(b) shows the same combined data set
using the transformation computed using the algorithm above. This display shows that the
two views are registered correctly. In this experiment, no prior knowledge of the transforma-
tion was used.

3.4. Matching Partial Views

In order to compare SAIs computed from different views, we need to adjust the number of
nodes because the relative sizes of the visible and hidden areas vary depending on the view-
ing direction.

Let us consider the problem of merging two views, 'V, and 'V2. Let S1 and S2 be the number
of nodes that would be visible from 'V and '2 if we had a complete model of the object. Let
the visible areas of the object surface be A I and A2 for V, and V2, respectively. The ratio of
the number of visible SAI nodes to the total number of SAI nodes, So is equal to the ratio of
the visible area to the entire object area, Ao:

S1  Al I 2 A2
so Ao So Ao

However, we do not know Ao since we have only partial views of the object, but we can esti-
mate A I and A2 from each of the views. Eliminating So from these equations, we obtain S2 =
S I A 2/A 1.

This equation enables us to modify the SAIs from different views so that the distribution of
nodes in the visible area is consistent between views. More precisely, we compute the scale
factor A2/A 1 from the estimated visible areas from each of the images, and move the nodes
of the SAI from 'V'2 so that the equation is satisfied.

The key in this procedure is the connectivity conservation property of the SAL. Specifically,

10



if a connected patch of the surface is visible, then its corresponding image on the SAI is also
a connected patch on the sphere. This property allows us to bring the two connected patches
into correspondence using a simple spherical scaling.

(a) (b)

Figure 8: Merging two views; (a) Overlaid views before registration; (b) Overlaid
views after registration.

3.5. Performance

Figure 9 shows an example of the error distribution after matching. This figure shows views
of the mesh used for performing the registration of Figure 8 in three different orientations.
The error at each node of the mesh, that is, the distance between the node and the closest
point of the data set, is displayed as a needle, the length of which is proportional to the error.
This display shows that the error is reasonably uniform across the mesh. The largest values
of the error occur at the edge of the mesh. This is because there is poor overlap between
mesh and data at those points.

For a more quantitative evaluation of the quality of the registration, Figure 10 lists error sta-
tistics computed on the example of Figure 9. The table lists the minimum, maximum, aver-
age, and standard deviation of the registration error at the nodes of the mesh. The
registration error is defined as the distance between a mesh node and the closest data point
after registration. The errors are listed in millimeters in the table. In both examples, the
mean error is on the order of 0. 1 mm which is also the maximum resolution of the range sen-
sor. The standard deviation is on the order of 0.2mm, reflecting the fact that the error is dis-
tributed in a relatively uniform manner. The large maximum error is due to "border effects".
Specifically, a node at the edge of the visible part of the mesh may not overlap exactly with
a region of the data set, thus causing a large error to be reported. This occurs only at a few
isolated nodes at the border. This effect is more noticeable in the case of the face because
only partial views are used, in which there is a larger number of border points. Finally, the
minimum error is very small, on the order of 0.01rmm, but this is really meaningless because
it occurs only at a very few isolated points and is the result of accidental alignment between
mesh nodes and data points.

These numbers show that the overall behavior of the registration error is on the order of the
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resolution of the sensor, in this case 0. 1 mm. This shows, in particular, that the node corre-
spondences found through SAI matching are correct and the estimation of the pose based on
the correspondences is basically as accurate as it can be given the finite sensor resolution.

Only the nodes of the mesh that are visible, as determined by the geometry of the sensor, are
actually used in the error computation. The errors at the other nodes is meaningless since
they are interpolated and not fit to the data. The errors were computed from 998 nodes out of
a total of 1620 nodes I.n this example. The ratio of number useful of useful nodes to total
number of nodes is lower in the case of the face because only partial views are used.

Figure 9: Distribution of errors in the registration example of Figure 8 displayed as a
needle map.

Min 0.006

Max 2.46

Mean 0.167

Standard deviation 0.215

Number of points 998

Figure 10: Matching and pose estimation error statistics for the examples of Figure 9.
The error values are expressed in millimeters.
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4. Building a Complete Model

We have described so far an algorithm for matching two pieces of the surface of an object
computed from two unregistered range images. We now consider the case of merging multi-
ple images into a single model. The basic approach is to match the surfaces from the images
in a pairwise manner, to combine the transformations obtained from the matching into trans-
formations between each image and a single model reference frame, to convert all the data
points from all the range image into this common coordinate system, and to fit a deformable
mesh to this data set in order to obtain a smooth surface model.

Figure 11 shows an example of model building from three views. In this experiment, 3-D
range data is obtained using a commercial light-stripe range-finder [9] which can acquire
registered range and intensity images. Figure 11 (a) shows the intensity images of a human
hand from three different arbitrary views. Figure 1 (b) and (c) show the tessellation of the
visible part of the hand and the corresponding SAI for each view, respectively. We use the
dual of the 7th subdivided ic6sahedron containing 980 faces as initial mesh. In each image,
only about 30% of the object is visible; the remaining 70% of the representation is interpo-
lated and is ignored in matching the SAIs.

Figure 11 (d) shows the result of pairwise image registration. Each of the two displays shows
a 3-D view of the set of data points obtained by combining the points from two views using
the transformation computed from the matching. The errors of the registration of these .mod-
els are 0.86 and 0.97 mm RMS distance, respectively. Figure 11 (e) shows several views of
the set of points obtained by combining the points from all three images using the transfor-
mations computed by the SAI matching algorithm. Finally, Figure I I(f) shows the complete
surface model obtained by applying the deformable surface algorithm [4] to the entire data
set.

This experiment highlights some of the characteristics of the SAI matching approach. First,
the viewpoints are arbitrary in that the transformations between them are not restricted to a
single-axis rotation as is often the case in modeling systems. Furthermore, the transforma-
tions between the viewpoints are not known a priori but are recovered accurately by the
algorithms. Second, the matching algorithm does not require any feature extraction or fea-
ture matching. This is an important characteristic that enables us to handle arbitrary curved
objects for which reliable feature extraction is difficult, such as the hand in Figure 11.

In the example of Figure 11, there is good surface overlap between all the views and there is
no ambiguity as to which transformations should be used to generate the final model. Figure
12 shows a different situation thL .s typical of a model building application in which we
have a larger number of image. From considerations of surface coverage, views 1,5 and 9
are sufficient to reconstruct the model (Figure 13). In fact, it would be preferable to use only
those views instead of the 12 views to speed up reconstruction and to minimize errors. How-
ever, the transformations between these three views, indicated by the thick vertical white
arrows, cannot be computed directly because there is very little overlap between the corre-
sponding surfaces. Therefore, the only way to c'-mpute the transformations is to compute
the intermediate transformations. indicatad by the curved arrows, using SAI matching

13



between consecutive views. These "elementary" transformations are compounded to form
the two desired transformations. Data points from images 1,5, and 9 are converted to a com-
mon coordinate system as shown in Figure 14(a). A 980-node surface model is then com-
puted by fitting a deformable surface as shown in Figure 14(b).

It is clear that we could have matched different views to recover the relative transformations
and that this particular selection may not be optimal. Finding the optimal combination of
views is still an open issue. What this example shows, however, is that the matching algo-
rithm provides us with the basic tool for performing registration between surfaces in a gen-
eral manner. It also shows that the individual transformations computed by the matching
algorithm are. accurate enough that they can be compounded over long sequences into trans-
formations which accurate enough for building a complete model.

14
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Figure 12: Twelve views of an object and computed poses.

Figure 13: Three views with sufficient overlap.

I, •--• "

(b) '-'--." 7'."" /"

Figure 14: Complete 3-D model; (a) Combined set of data points from registered range
data; (b) Surface model.

16



5. Conclusion

We introduced a new approach for building models of curved objects from multiple arbi-
trary views. The basic representation is a mesh of nodes on the surface that satisfies certain
regularity constraints. We introduced the notion of simplex angle as a curvature indicator
stored at each node of the mesh. We showed how a mesh can be mapped into a spherical rep-
resentation in canonical manner, and how object models can be generated by merging multi-
ple views by computing the transformations among the views.

This approach eliminates two major limitations of conventional model building systems.
First, it enables us to convert the matching problem to a straightforward :orrelation of
spherical images. As a result, the approach is able to deal with arbitrary transformations
between views and to operate without requiring an initial estimate of the transformation.
Second, it does not require any feature extraction or feature matching. As a result, the SAI
matching approach can handle general curved surfaces. We have used the SAI as a way to
store curvature. However, the concept of SAl is more general because other pieces of infor-
mation may be stored at each node of the spherical image. For example, albedo or texture
could be stored. This appearance information can be used to augment the definition of the
distance between SAIs by adding additional terms Adding appearance information will
make the approach more effective by providing a more discriminating measure of distance
between shapes. Another research direction is in the determination of the best sequence of
views to be used for a particular model. In the examples presented in this paper, the number
of images was small enough and the overlap between them was large enough that it did not
matter in which order the images are processed. In general, however, it is important to com-
pare the pairs of images that are most likely to yield the most accurate matching results.
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